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Abstract. A quantum mechanical version of a kinetic equation is derived which accounts 
for three-particle collisions. It is shown that the total energy is conserved in the binary 
collision approximation. 

1. Introduction 

The main problem of kinetic theory is the determination of the single-particle distribu- 
tion function. With its help it is possible to calculate, e.g., the transport properties of 
a many-particle system. 

The single-particle distribution function may be determined from the Boltzmann 
equation. The latter was formulated more than a hundred years ago. Since that time 
there have been many attempts to provide rigorous statistical foundations and generali- 
sations of the Boltzmann equation. 

The generalisations were developed in different directions. One direction was to 
include higher-order collisions in classical statistics in order to describe denser systems 
and to account for the formation of ‘complexes’ (Cohen 1968, Dorfman and Cohen 
1972). Another direction was to formulate in a similar way a kinetic equation for 
quantum systems (Paltsev 1977). One of the most powerful directions seemed to be 
the attempt to formulate kinetic equations with the help of Green functions (Martin 
and Schwinger 1959, Keldysh 1964, Kadanoff and Baym 1962, Kremp er al 1985). 

In this paper, we wish to discuss quantum statistical generalisations of kinetic 
equations of Cohen type and to consider the consequences. 

The state of a quantum mechanical many-particle system is described by the density 
operator p N ,  the normalisation of which is given by 

Tr PN = 1. (1) 

For practical applications it is sufficient to consider reduced density operators only, 
namely 

Tr F, = V s  
l . . . s  
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Moreover, it is necessary to use certain restrictions, e.g. in the homogeneous case the 
momentum representation for the single-particle density operator is 

( P I I ~ I I P : )  = 6 ( P ,  - p : ) F ( P , ) .  (3) 

Here F (  p , )  is the (momentum) distribution function. 
Mean values of additive and binary operators, respectively, are given by 

(A,) = n y A P J  (4) 

and 

(A12) =4n2 T .  (A12F12). 

Here n = N /  V is the number density. The equation of motion for F, follows from the 
von Neumann equation and reads 

If, is the Hamiltonian of the s-particle subsystem: 
I 

H, =H:+ 1 vj (6) 
i< j  

with H: being the single-particle contribution of the s particles; in the ideal system 
without external forces we have Ht = E:=, p f / 2 m i .  v, is the two-particle interaction. 

In the kinetic theory, the equation of motion for the single-particle density operator 
plays, of course, a special role. However, as usual, equation ( 5 )  has the shape of a 
hierarchy. In order to get a closed equation for the determination of F , ,  i.e. a kinetic 
equation, we must apply certain approximations for F,, occurring in this equation. To 
this end we write the formal solution of equation ( 5 ) :  

Fs(t)=exp[-iH,(t-to)/h]F,(to) exp[iHs(t-to)/h] 

+; / o f - f o  dt'exp( -iH,t'/h) Tr 
l h  S t l  i = ,  

x[Vi,stlr FStl(t- 0 1  exp(iH,t'/h). (7) 
Fs(to) is the value of F , ( t )  at time to. So far, to is an arbitrary time. 

In order to specify (7),  it is necessary to choose an initial condition in agreement 
with the physical situation. It is possible to get a closed kinetic equation if we apply 
the principle of the total weakening of the initial correlation. According to Bogolyubov 
(1946) we write in this case 

It is possible to write an equality of type (8) if we neglect the initial correlations, for 
which the correlation time T ~ , ,  is much smaller than the relaxation time T~~~ of F,.  
Thus we neglect the correlations for which 

Team" T r e ~ .  (9 )  
Therefore the condition of the complete weakening of initial correlations corresponds 
to the assumption that long living correlations (with ~,,,b T ~ ~ ~ )  do not play an essential 
role. 
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In other words, assumption (9) means that we exclude bound states and long living 
(large scale) fluctuations. If, however, the formation of bound states is possible, 
condition (8) must be replaced by another condition which accounts for the fact that 
bound states exist as asymptotic states (Schlanges 1985). 

The usual Boltzmann equation may be derived in the frame of the binary collision 
approximation if the condition of the complete weakening of initial correlations is 
applied and if retardation effects are neglected. The properties of such an equation 
are, of course, well known, e.g. it conserves the kinetic energy (only). In this sense 
the Boltzmann equation is referred to as a kinetic equation for ideal gases. 

The layout of this paper is as follows. After a brief derivation of the Boltzmann 
equation for ideal gases, the kinetic equation will be generalised to the case of 
three-particle collisions. In 0 3 we will show that the kinetic equation derived represents 
a kinetic equation for non-ideal gases which conserves the total (kinetic and potential) 
energy in the binary collision approximation (approximation of the second virial 
coefficient). Thus a generalisation of the classical kinetic equation derived by Cohen 
will be given. Quantum mechanical kinetic equations of such a type were given first 
by Paltsev (1972), Klimontovich and Kremp (1981), McLennan (1982) and Lagan and 
McLennan (1984). In the later papers, especially, the aspect of bound states was 
mainly stressed, while we will focus our attention on the problem of non-ideality. 

2. Kinetic equation for ideal gases: Boltzmann equation 

We start from the equation for F,: 

a Fl iR-+ [ H , ,  F,] = n Tr [VIZ,  F12]. 
a t  2 

From equation (7)  we obtain, in the binary collision approximation, 

F12(t) = exp[-iH12(t- to)/hlF12(to) exp[iHI2(t- tO)/f i l .  (11) 
In such an approximation higher-order collisions (e.g. of three particles) are totally 
neglected. The Bogolyubov condition of the weakening of the initial correlation with 
(8) becomes 

1+-m lim IlexP[-iH,,(t- t O ) l ~ I F l Z ( t O )  exp[iH,2(t- to) /hl  

-exp[-iH',~'( t- to)/h]Fl(to)F2(to) exp[iH',~'(t-f,)/h])I = O .  (12) 

F l 2 (  t o )  = n,2FI( t o )  F2( to)n :2. 

nI2 = ,!mm exp( - iH,,t/ h )  exp(iH',0,'t/ R ) .  (14) 

n:2n,2 = 1 (15) 

a,&:,= 1. (16) 

From (12) we get for any to 

(13) 
Here we use Moller operators according to Taylor (1975): 

The Moller operator has the property 

and for potentials which do not support bound states we have 
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An essential property is the intertwining relation 

n,,H(,;) = H,,R,,. (17)  

Now we elimiate the quantities F,(to).  From ( 1 1 )  we get with (13 )  

FI2(t) = exp[ -iH12(t - to) /  h l ~ 1 2 ~ , ( t o ) ~ 2 ( t ~ ) ~ ~ 2  exp[ iHd t  - t o ) /  h l .  
The single-particle density operator obeys the equation 

(18) 

Fl( t )  = exp[ -iffl( t - to ) /  h]F , (  to) exp[iH,( t - to) /  h ] + O ( n ) .  (19) 

F,2( t )  = n , * F , ( t ) ~ * ( t ) ~ : 2 + O ( n ) .  (20) 

With (19) we get from (18 )  up to higher orders in the density: 

Thus we have shown that F12 may be represented (approximately) as a functional of 
the single-particle density operator: 

F12(f) = S(F,(t)F,(t)) (21) 

and consequently we get a closed kinetic equation for the determination of F,( t ) .  The 
‘operator version’ of the Boltzmann equation is 

The usual shape of the Boltzmann equation may be achieved if we use scattering 
quantities and especially scattering cross sections. 

According to Taylor (1975) we may introduce the scattering operator T (the matrix 
elements are the T matrix): 

TI>= V,*fll* (23) 

= 1 + GY2TI2. (24) 

(25) 

and with the propagator Go we write 

Furthermore we have to apply the optical theorem which reads 

TI2 - T:, = - T12( CY2 - GY;) TT2. 
With equations (3 )  and (22)-(25), we obtain in the momentum representation and the 
homogeneous case the usual shape of the quantum Boltzmann equation: 

a 
- F , ( P , t )  = I(P1t) 
a t  

x 2T8 ( EP1,, - E PIP,)[ F,  ( P I  t ) Fz( P 2 f )  - Fl( P, t F2( P2t)l .  (26) 
Besides particle number and momentum, equation (26) conserves the kinetic energy: 

d 
- (pf/2m,) = 0. d t  

The kinetic equation (26) (quantum Boltzmann equation) is valid for ideal systems 
only, as can be seen from equation (27). In particular, the T matrix involved does 
not contain many-body effects and the phase space occupation (Pauli blocking) is not 
accounted for. This would lead, e.g., to additional factors 1 - nF,( p )  in the square 
brackets of equation (26). 
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In order to include many-body effects in a consistent manner it would be appropriate 
to use the technique of Green functions as carried out by Martin and Schwinger (1959), 
Keldysh (1964), Kadanoff and Baym (1962) and Kremp et al (1985). 

In particular, we did not include bound states; for this purpose see Klimontovich 
and Kremp (1981), McLennan (1982) and Lagan and McLennan (1984). 

In the next section we shall deal with non-ideality effects, and in particular we will 
show that the total energy is conserved by the kinetic equation to be derived (see also 
Klimontovich 1975). 

3. Kinetic equation for non-ideal gases: energy conservation 

We will now construct kinetic equations which account for higher-order collisions. In 
particular, we will expand the binary density operator into a cluster series; such an 
expansion seems to be a very general method to derive kinetic equations for non-ideal 
systems. 

The investigations by Bogolyubov (1946, 1971), Bogolyubov and Gurov (1947), 
Cohen (1968), Dorfman and Cohen (1972) and Weinstock (1963) showed that in this 
connection divergent terms appear. In simple cases these terms may be eliminated by 
a corresponding elimination of the initial time to in a consistent manner. 

We will consider now the cluster expansion of F,, in the triple collision approxima- 
tion. In this approximation, the first three equations of the hierarchy of density 
operators are, in the spatially homogeneous case, 

f i a  
i a t  - - F1= n T’ VI2 9 F,21 

Using the condition of the total weakening of the initial correlations we get from the 
formal solution of (30) 

F123(f)=exp[-iH123(r - t O ) / f i l F 1 2 3 ( f 0 )  exp[iH123(t-t0)/fi1 (31) 

F123(fO)  = fi , 2 3 ~ l ~ ~ o ~ ~ 2 ~ ~ o ~ ~ 3 ~ ~ o ~ ~ ~ 2 3 .  (32) 

and with the application of Moller operators 

The formal solution of (29) for FI2 is 

F12(t) = e x p [ - i H d t -  to)/filF12(to) exp[iHi,,(t- to)/fil 

+A dt’exp( -iH,,t’/fi) 
Ih 

xTr[VI3+ V3*, F 1 2 3 ( t - t ’ ) ]  exp(iH,,t’/fi). (33) 

In our approximation, we will discuss (33) in the case where three-particle collisions 
are taken into account. 

Using the identity 



3256 W D Kraeft, M Schlanges and D Kremp 

and the homogeneity of the system, we carry out the integration over t’ in (33). 
Replacing F12(to) in the first RHS term of (33), according to equation (13), we obtain 

FI2(t) =exp[ -iHI2(t- t0)/h1S2,,F1(t0)F2(t0)~~, exp[ iHd t -  to ) /h l  

+ n  Tr {Fl23(t)-exp[ - iH l2 ( t - t0 ) /h IF ,~3( t~ )  exp[iH12(t- to)/hl}. 
(35 )  

Two problems occur in connection with equation (35) .  The first one is that of secular 
divergences. This means that there are terms which grow with r /  T~~~~ as T + CO. The 
physical origin of such terms are successive binary collisions (Cohen 1968, Dorfman 
and Cohen 1972). The second problem is that of the retardation, i.e. F12(t) is given 
in terms of F,( to). Both these problems are closely connected with each other. 

Let us consider, for this reason, the formal solution of equation (28). Using the 
binary collision approximation for F,,, the t’ integration may be carried out as before. 
The result is 

Fl( t )  = exp[ - iH,( t - t o ) /  h]F,( to) exp[iHl( t - to)/ h ]  

+ n  Tr{exp[-iH12(t- 2 to)/hlF12(f0) exp[iHl2(t-to)/h1 

- exp[ - iHl(t - to)/ hIFl2(t0) expCiHl(t - to)/ fill. (36) 
Neglecting the retardation in the second RHS term of (36), we obtain 

Fl( t )=exp[  - iHl ( t - to) /h]F , ( to)  exp[iH,(t-t,)/h] 

+ n [%,Fl(t)F2(t)n:Z- FI(t)F,(t)l. (37) 

From (37) we see that the difference between F , ( t )  and Fl(to) is of the order of n. 
Therefore we may conclude that retardation effects are of the same density order as 
three-particle collisions, and thus in the two-particle density operator such effects must 
be retained. 

Consequently we get from (351, on elimination of F,( to)  (Paltsev 1972, Klimontovich 
and Kremp 1981, McLennan 1982) 

F d t )  = %2FI(t)F2(t)n:2+ n 

x ?;’ [.n 123 Fl( t 1 F2( t ) F3( t :23 - 1 2 6  ( t 1 F,( t ) F 3  ( t :21 

- Tr 12( I 3  Fl ( F2 ( t2) F3 ( :3) :2 
3 

+ I 2  (a23 F1( t 1 F2 ( t ) 4 ( t 1 n:3 1 :2 1. (38) 
The first RHS term of (38) leads, as we have shown, to the usual Boltzmann collision 
integral. Among the terms of order n, the first one describes three-particle collisions 
and has the same structure as the Boltzmann collision term. The second term of order 
n arises from the elimination of the retardation. It describes two successive binary 
collisions of three particles. By this term the secular divergences are avoided. As we 
will now show, this term in particular provides for the conservation of the potential 
energy. 

With equation (38), we get from (28) the following kinetic equation: 
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Here Z#,) is the usual Boltzmann collision integral. The contribution I $ : I )  represents 
the three-particle collision and may be written as 

dp2 dp3 dPi dP2 dP3 2h 

(41) 
i z(R) _ _  

( & I )  - n [ VIZ, F ' , 3  

where F\;) is given by the expression 

F\%t) = - n  T' [ n 1 2 ( n 1 3 F l F 2 F 3 n : 3 ) ~ ~ 2 + ~ ~ 2 ( ~ 2 3 ~ ~ ~ 2 ~ 3 ~ ~ 3 ) ~ ~ 2 1  

according to (38). 
Equation (39) is the quantum version of the Choh-Uhlenbeck kinetic equation, 

derived by Paltsev (1972), Klimontovich and Kremp (1981) and McLennan (1982). 
Let us now consider the question of energy conservation. We start from the 

expression for the time derivative of the mean value of the kinetic energy (Klimontovich 
1975, Klimontovich and Ebeling 1972): 

According to (28) we get 

For F12(t) we use (38), which consists of five contributions. According to these five 
contributions we write 

5 

kkin = c ELin. (44) 
i = l  

&kin  corresponds to the level of the Boltzmann equation and is equal to zero. In the 
third term, the trace Tr may be carried out, and we have the Boltzmann case, giving 

= 0. The second term gives 

Here we have taken into account the fact that the addition of p :  yields zero (cyclic 
invariance) while the addition of p :  produces the factor i. Furthermore, we use the 
fact that V12 produces the same result as Vi3 and V23. Thus we may write 
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Here we have used 

HY23 =A+-+- P: P: 
2m 2m 2m 

v123 = v12+ v23+ H123 = H y 2 3  + * 

Replacing V I 2 3  in (45) by Hlz3 is possible because 
Tr{ A[A, B ] }  = 0. 

Taking into account the intertwining relation 

H123f1123 = f1123Hy23 

and the adjoint formula 

fl:23H123 = Hy23RT23 

we obtain, instead of (45), 

(46) 

(47) 

1 n3 
i h  6 123 

& t i n  = 7 - Tr (Hy23f l  123[HY23,  FI ( f ) F 2 (  t ) F 3 ( t ) I f l ; d e  

Eti" = 0. 

(48) 

The commutator vanishes, and thus 

For the remaining contributions of (44) it is necessary to have commutation rules for 
Hamiltonians and products of two-particle Merller operators. From 

HI2fll2 = nI2Hy2 and [ H i ,  R12] = 0 

follows 

f l l 2 H Y 2 3  - H Y 2 3 n 1 2  = v12012  (49) 

fl12fl13HY23-HY23f12,2f113 =f112V13n13+ v12fl12fl13. (50) 

HY23fl?3fl :2 - :3fi?2Hy23 = 0 :3 v13fi;2 + T3flT2 (51 )  

and 

The adjoint equation is 

In a similar way to before we have for the fourth and the fifth terms of (44) 

+ v23 7 f123Fl ( t ,  F2( t ,  F3( t ) f l131) f l  T2). (53)  
Here we have again applied Tr{A[A, B ] }  = 0 and [ H y 2 3 ,  F,( t)F2(t)F3(t)] = 0. 
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According to equation (20) we have 

Taking into account 

and 

we have 

3259 

(54) 

Equation (55) represents the negative time derivative of the mean value of the potential 
energy in the approximation of the second virial coefficient (binary collision approxima- 
tion). Therefore we have from (42) and (55) 

a a 
-(T)=--(v).  
a t  a t  

The potential energy contribution comes from the retardation correction and corre- 
sponds to self-energy correlations. 

4. Concluding remarks 

The aim of our paper was to discuss the influence of higher-order collisions on the 
structure of the equation of motion for the single-particle distribution function, i.e. of 
the kinetic equation. Thus we derived additional collision integrals, which go beyond 
that of the usual Boltzmann equation. While the latter equation conserves the kinetic 
energy only, we accounted in our paper for non-ideality (strong coupling) effects, 
which exist if the mean value of the potential energy is of the same order as that of 
the kinetic energy. 

Non-ideality effects are not only of relevance for the determination of transport 
properties, but also for the kinetics of chemically reacting systems. Here, of course, 
bound states must be included additionally (McLennan 1982). 

In particular, the theoretical approach to chemical equilibrium is qualitatively 
changed by the inclusion of non-ideality effects. The problem of non-ideality in 
connection with equilibrium and transport properties was discussed in Ebeling et a1 
(1976, 1984) and Kraeft et a1 (1986). The kinetic equation described in our paper 
accounts for non-ideality effects (in contrast to the usual Boltzmann equation) on the 
level of the second virial coefficient. 
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